Cyanobacterial endobionts within a major marine planktonic calcifier (Globigerina bulloides, Foraminifera) revealed by 16S rRNA metabarcoding
نویسندگان
چکیده
We investigated the possibility of bacterial symbiosis in Globigerina bulloides, a palaeoceanographically important, planktonic foraminifer. This marine protist is commonly used in micropalaeontological investigations of climatically sensitive subpolar and temperate water masses as well as wind-driven upwelling regions of the world’s oceans. G. bulloides is unusual because it lacks the protist algal symbionts that are often found in other spinose species. In addition, it has a large offset in its stable carbon and oxygen isotopic compositions compared to other planktonic foraminifer species, and also that predicted from seawater equilibrium. This is suggestive of novel differences in ecology and life history of G. bulloides, making it a good candidate for investigating the potential for bacterial symbiosis as a contributory factor influencing shell calcification. Such information is essential to evaluate fully the potential response of G. bulloides to ocean acidification and climate change. To investigate possible ecological interactions between G. bulloides and marine bacteria, 18S rRNA gene sequencing, fluorescence microscopy, 16S rRNA gene metabarcoding and transmission electron microscopy (TEM) were performed on individual specimens of G. bulloides (type IId) collected from two locations in the California Current. Intracellular DNA extracted from five G. bulloides specimens was subjected to 16S rRNA gene metabarcoding and, remarkably, 37–87 % of all 16S rRNA gene sequences recovered were assigned to operational taxonomic units (OTUs) from the picocyanobacterium Synechococcus. This finding was supported by TEM observations of intact Synechococcus cells in both the cytoplasm and vacuoles of G. bulloides. Their concentrations were up to 4 orders of magnitude greater inside the foraminifera than those reported for the California Current water column and approximately 5 % of the intracellular Synechococcus cells observed were undergoing cell division. This suggests that Synechococcus is an endobiont of G. bulloides type IId, which is the first report of a bacterial endobiont in the planktonic foraminifera. We consider the potential roles of Synechococcus and G. bulloides within the relationship and the need to determine how widespread the association is within the widely distributed G. bulloides morphospecies. The possible influence of Synechococcus respiration on G. bulloides shell geochemistry is also explored. Published by Copernicus Publications on behalf of the European Geosciences Union. 902 C. Bird et al.: Cyanobacterial endobionts within a major marine planktonic calcifier
منابع مشابه
Geochemical imprints of genotypic variants of Globigerina bulloides in the Arabian Sea
Planktonic foraminifera record oceanic conditions in their shell geochemistry. Many palaeoenvironmental studies have used fossil planktonic foraminifera to constrain past seawater properties by defining species based on their shell morphology. Recent genetic studies, however, have identified ecologically distinct genotypes within traditionally recognized morphospecies, signaling potential reper...
متن کاملCryptic species of planktonic foraminifera: their effect on palaeoceanographic reconstructions.
Shells of planktonic foraminifera recovered from marine sediments provide a multitude of important palaeoproxies. Most of these proxies are based on the assumption that each morphospecies of planktonic foraminifera represents a genetically continuous species with a unique habitat. Recent discovery of hitherto hidden genetic diversity among modern planktonic foraminifera has significant repercus...
متن کامل16S rRNA gene metabarcoding and TEM reveals different ecological strategies within the genus Neogloboquadrina (planktonic foraminifer)
Uncovering the complexities of trophic and metabolic interactions among microorganisms is essential for the understanding of marine biogeochemical cycling and modelling climate-driven ecosystem shifts. High-throughput DNA sequencing methods provide valuable tools for examining these complex interactions, although this remains challenging, as many microorganisms are difficult to isolate, identif...
متن کاملThe Interdependency of the Morphological Variations of the Planktonic Foraminiferal Species Globigerina bulloides in Surface Sediments on the Environmental Parameters of the Southwestern Indian Ocean
18 surface sediment samples collected from a north-south transect along the Indian Ocean have been analyzed for planktonic Foraminifera content. Among the other planktonic foraminiferal faunas, Globigerina bulloides was present substantially in all samples. Census data of G. bulloides were measured for different parameters (average size, mean proloculus size, coiling direction, and number of ch...
متن کاملIsotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean
Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ(18)O and δ(13)C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree wi...
متن کامل